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SUMMARY

We propose a local adaptive multiplicative error model (MEM) accommodating time-varying parameters. MEM
parameters are adaptively estimated based on a sequential testing procedure. A data-driven optimal length of local
windows is selected, yielding adaptive forecasts at each point in time. Analysing 1-minute cumulative trading
volumes of five large NASDAQ stocks in 2008, we show that local windows of approximately 3 to 4 hours
are reasonable to capture parameter variations while balancing modelling bias and estimation (in)efficiency. In
forecasting, the proposed adaptive approach significantly outperforms a MEM where local estimation windows
are fixed on an ad hoc basis. Copyright © 2014 John Wiley & Sons, Ltd.

1. INTRODUCTION

Recent research in econometrics and statistics shows that modelling and forecasting of high-frequency
financial data is a challenging task. Researchers strive to understand the dynamics of processes when
all single events are recorded while accounting for external shocks as well as structural shifts on
financial markets. The fact that high-frequency dynamics are not stable over time but are subject to
regime shifts is hard to capture by standard time series models. This is particularly true whenever it
is unclear where the time-varying nature of the data actually comes from and how many underlying
regimes there might be.

This paper addresses the phenomenon of time-varying dynamics in high-frequency data, such as
(cumulative) trading volumes, trade durations, market depth or bid—ask spreads. The aim is to adapt
and to implement a local parametric framework for multiplicative error processes and to illustrate
its usefulness when it comes to out-of-sample forecasting under possibly non-stable market condi-
tions. We propose a flexible statistical approach allowing adaptive selection of a data window over
which a local constant-parameter model is estimated and forecasts are computed. The procedure
requires (re-)estimating models on windows of evolving lengths and yields an optimal local estima-
tion window. As a result, we provide insights into the time-varying nature of parameters and of local
window lengths.

The so-called multiplicative error model (MEM), introduced by Engle (2002), serves as a workhorse
for the modelling of positive-valued, serially dependent high-frequency data. It is successfully applied
to financial duration data, where it was originally introduced by Engle and Russell (1998) in the con-
text of an autoregressive conditional duration (ACD) model. Likewise, it is applied to model intra-day
trading volumes, see, among others, Manganelli (2005); Brownlees et al. (2011); Hautsch ez al. (2014).
MEM parameters are typically estimated over long estimation windows in order to increase estimation
efficiency. However, empirical evidence makes parameter constancy in high-frequency models over
long time intervals questionable. Possible structural breaks in MEM parameters have been addressed,
for instance, by Zhang et al. (2001), who identify regime shifts in trade durations and suggest a thresh-
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old ACD (TACD) specification in the spirit of threshold ARMA models, see, for example, Tong (1990).
To capture smooth transitions of parameters between different states, Meitz and Terédsvirta (2006) pro-
pose a smooth transition ACD (STACD) model. Whereas in STACD models parameter transitions are
driven by observable variables, Hujer et al. (2002) allow for an underlying (hidden) Markov process
governing the underlying state of the process.

Regime-switching MEM approaches have the advantage of allowing for changing parameters on
possibly high frequencies (in the extreme case from observation to observation) but require imposition
of a priori structures on the form of the transition, the number of underlying regimes and (in the case
of transition models) on the type of the transition variable. Moreover, beyond short-term fluctuations,
parameters might also reveal transitions on lower frequencies governed by the general (unobservable)
state of the market. Such regime changes might be captured by adaptively estimating a MEM based
on a window of varying length and thus providing updated parameter estimates at each point in time.
The main challenge of the latter approach, however, is the selection of the estimation window. From a
theoretical perspective, the length of the window should, on the one hand, be maximal to increase the
precision of parameter estimates and, on the other, sufficiently short to capture structural changes. This
observation is also reflected in the well-known result that aggregations over structural breaks (caused
by too long estimation windows) can induce spurious persistence and long range dependence.

This paper suggests a data-driven length of (local) estimation windows. The key idea is to implement
a sequential testing procedure to search for the longest time interval with given right end for which
constancy of model parameters cannot be rejected. This mechanism is carried out by re-estimating
(local) MEMs based on data windows of increasing lengths and sequentially testing for a change in
parameter estimates. By controlling the risk of false alarm, the algorithm selects the longest possible
window for which parameter constancy cannot be rejected at a given significance level. Based on this
data interval, forecasts for the next period are computed. By repeating these steps in every period,
variations in parameters are thus automatically captured.

The proposed framework builds on the local parametric approach (LPA) originally proposed by
Spokoiny (1998). The presented methodology has been gradually introduced into the time series liter-
ature; see, for example, Mercurio and Spokoiny (2004) for an application to daily exchange rates and
Cizek et al. (2009) for an adaptation of the approach to generalized autoregressive conditional het-
eroskedasticity (GARCH) models. In realized volatility analysis, LPA has been applied by Chen et al.
(2010) to daily stock index returns.

The contributions of this paper are to introduce local adaptive calibration techniques into the class
of multiplicative error models, to provide valuable empirical insights into the (non-)homogeneity of
high-frequency processes and to show the usefulness of the approach in the context of out-of-sample
forecasting. Though we specifically focus on 1-minute cumulative trading volumes of five highly
liquid stocks traded at NASDAQ, our findings may be carried over to other high-frequency series, as
the stochastic properties of high-frequency volumes are quite similar to those of, e.g., trade counts,
squared midquote returns, market depth or bid—ask spreads.

We aim at answering the following research questions: (i) How strong is the variation of MEM
parameters over time? (ii) What are typical interval lengths of parameter homogeneity implied by
the adaptive approach? (iii) How good are out-of-sample short-term forecasts compared to adaptive
procedures where the length of the estimation windows is fixed on an ad hoc basis?

Implementing the proposed framework requires re-estimating and re-evaluating the model based
on rolling windows of different lengths which are moved forward from minute to minute. This pro-
ceeding yields extensive insights into the time-varying nature of high-frequency trading processes.
Based on NASDAQ trading volumes, we show that parameter estimates and estimation quality clearly
change over time and provide researchers valuable rule of thumbs for the choice of local intervals.
In particular, we show that, on average, precise adaptive estimates require local estimation win-
dows of approximately 3 to 4 hours. Moreover, it turns out that the proposed adaptive method yields
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significantly better short-term forecasts than competing approaches using fixed-length rolling windows
of comparable sizes. Hence it is not only important to use local windows but also to adaptively adjust
their length in accordance with prevailing (market) conditions. This is particularly true in periods of
market distress where forecasts utilizing too much historical information perform clearly worse.

The remainder of the paper is structured as follows. After the data description in Section 2, the
multiplicative error model and the local parametric approach are introduced in Sections 3 and 4,
respectively. Empirical results on forecasts of trading volumes are provided in Section 5. Section 6
concludes.

2. DATA

We use transaction data of five large companies traded at NASDAQ—Apple Inc. (AAPL), Cisco Sys-
tems, Inc. (CSCO), Intel Corporation (INTC), Microsoft Corporation (MSFT) and Oracle Corporation
(ORCL)—which account for approximately one third of the market capitalization within the technol-
ogy sector. Our variable of interest is the 1-minute cumulative trading volume covering the period
from 2 January to 31 December 2008. To remove effects due to market opening, the first 30 minutes of
each trading session are discarded. Hence, at each trading day, we analyse data from 10:00 to 16:00.

Descriptive statistics (not shown in the paper) indicate right-skewed distributions, whereas the
Ljung—Box test statistics show a strong serial dependence as the null hypothesis of no autocorrelation
(among the first 10 lags) is clearly rejected. Autocorrelation functions indicate that high-frequency
volumes are strongly and persistently clustered over time.

Denote the 1-minute cumulative trading volume at time point i by y;. Assuming a multiplicative
impact of intra-day periodicity effects, we compute seasonally adjusted volumes by

yi = yisy! (1)

with s; representing the intra-day periodicity component at time point i . Seasonality components are
typically assumed to be constant over time. However, to capture slowly moving (‘long-term’) com-
ponents in the spirit of Engle and Rangel (2008), we estimate the periodicity effects on the basis of
30-day rolling windows. Alternatively, seasonal effects could be captured directly within the local
adaptive framework presented below. As our focus is on (pure stochastic) short-term variations in
parameters rather than on deterministic periodicity effects, we decide to remove the former before-
hand. This leaves us with non-homogeneity in the processes, which is not straightforwardly taken into
account and allows us evaluating the potential of a local parametric approach even more convincingly.
The intra-day component s; is specified via a flexible Fourier series approximation as proposed by
Gallant (1981):

M
si =681+ Z {8¢.mcos (i -2mwm) + S5,msin (7 - 2w m)} 2)

m=1

Here, 8, 6., and és,,, are coefficients to be estimated, and 7 € (0, 1] denotes a normalized intra-day
time trend defined as the number of minutes from opening until i divided by the length of the trading
day,i.e.7 = i/360. The order M is selected according to the Bayes information criterion (BIC) within
each 30-day rolling window. To avoid forward-looking biases, the periodicity component is estimated
using previous data only. The sample of seasonally standardized cumulative 1-minute trading volumes
thus covers the period from 14 February to 31 December 2008. The estimated daily seasonality factors
change mildly in their level, reflecting slight long-term movements.

Figure 1 displays the intra-day periodicity components associated with the lowest and largest
monthly volumes, respectively, observed through the sample period. We observe the well-known
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Figure 1. Estimated intra-day periodicity components for cumulative one-minute trading volumes (in units of
100,000 and plotted against the time of the day) of selected companies at NASDAQ on 2 September (lower, lowest
30-day trading volume) and 30 October 2008 (upper, highest 30-day volume)

(asymmetric) U-shaped intra-day pattern with high volumes at the opening and before market clo-
sure. Particularly before closure, it is evident that traders intend to close their positions, creating high
market activity.

3. LOCAL MULTIPLICATIVE ERROR MODELS

The multiplicative error model (MEM), as discussed by Engle (2002), has become a workhorse
for analysing and forecasting positive valued financial time series, such as trading volumes, trade
durations, bid—ask spreads, price volatilities, market depth or trading costs. The idea of a multiplica-
tive error structure originates from the structure of the autoregressive conditional heteroskedasticity
(ARCH) model introduced by Engle (1982). In high-frequency financial data analysis, a MEM was
first proposed by Engle and Russell (1998) to model the dynamic behaviour of the time between trades
and has been referred to as autoregressive conditional duration (ACD) model. The ACD model is thus
a special type of MEM applied to financial durations. During the remainder of the paper, we use both
labels as synonyms. For a comprehensive literature overview, see Hautsch (2012).

3.1. Model Structure

The principle of a MEM is to model a non-negative valued process y = {y;}/—;, e.g., the trading
volume time series in our context, in terms of the product of its conditional mean process u; and a
positive valued error term ¢; with unit mean:

yi = pigi, Elg| Fioq] =1 3)

conditional on the information set /; up to observation i . The conditional mean process of order (p, q)
is given by an ARMA-type specification:

P q
pi=pi@) =0+ Y ajyioj+ Y Bili- 4)
j=1 j=1
with parameters w, ¢ = (al, .. ,oep)T and § = (ﬂl e /Sq)T. The model structure resembles

the conditional variance equation of a GARCH(p, ¢) model, as soon as y; denotes the squared
(de-meaned) log return at observation i .

Natural choices for the distribution of ¢; are the (standard) exponential distribution and the Weibull
distribution. The former distribution allows for quasi maximum likelihood estimation and consistent
estimates of EACD parameters even in the case of distributional misspecification. The latter is a simple
but powerful generalization being sufficiently flexible in most applications. Define I = [ig — n, ig]
as a (right-end) fixed interval of (n + 1) observations at observation ig. Then, local ACD models are
given as follows:
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(i) Exponential-ACD model (EACD): &; ~ exp(1), g = (0., ,BT)T, with (quasi) log-likelihood
function over I = [ig — n, io] given iyp:

n

br(yibe) = ) (—logﬂi - %)I(i el )

i=max(p,q)+1

(i) Weibull-ACD model (WACD): &; ~ G(s,1), 6w = (w.,aT, ﬁT,s)T, with log-likelihood function
over I = [ig — n, o] given iyp:

GOt = > [logiﬂlog (1 ﬂ/s)yi _{F(l —i—Ml./s)y,-

i i

}S}I(i el) (6)

i=max(p,q)+1

Correspondingly, the (quasi-)maximum likelihood estimates ((Q)MLEs) of g and Oy over the data
interval I are given by

0r = arg gleagﬁz(y: 6) @)

3.2. Local Parameter Dynamics

The idea behind the local parametric approach (LPA) is to select at each time point an optimal length
of data window over which a constant parametric model cannot be rejected by a test to be described
below. The resulting interval of homogeneity is used to locally estimate the model and to compute
out-of-sample predictions. Since the approach is implemented on a rolling window basis, it naturally
captures time-varying parameters and allows identifying breakpoints where the length of the locally
optimal estimation window has to be adjusted.

The implementation of the LPA requires estimating the model at each point in time using estima-
tion windows with sequentially varying lengths. We consider data windows with lengths of 1 hour, 2
hours, 3 hours, 1 trading day (6 hours), 2 trading days (12 hours) and 1 trading week (30 hours). As
non-trading periods (i.e. overnight periods, weekends or holidays) are removed, the estimation win-
dows contain data potentially covering several days. Applying (local) EACD(1, 1) and WACD(1, 1)
models based on five stocks, we estimate in total 4,644,000 parameter vectors. It turns out that esti-
mated MEM parameters substantially change over time, with the variations depending on the lengths
of underlying local (rolling) windows. As an illustration, Figure 2 shows EACD parameters employ-
ing 1-day (6 trading hours) and 1-week (30 trading hours) estimation windows for Intel Corporation
(INTC). Note that the first 30 days are used for the estimation of intra-day periodicity effects, whereas
an additional 5 days are required to obtain the first ‘weekly’ estimate (i.e. an estimate using 1 trading
week of data).

We observe that estimated parameters (5 o and E) and persistence levels ((7 + E) clearly vary
over time. As expected, estimates are less volatile if longer estimation windows (such as 1 week of
data) are used. Conversely, estimates based on local windows of 6 hours are less stable. This might be
induced either by high (true) local variations which are smoothed away if the data window becomes
larger, or by an obvious loss of estimation efficiency as fewer data points are employed. These dif-
ferences in estimates’ variations are also reflected in the empirical time series distributions of MEM
parameters. Table I provides quartiles of the estimated persistence (54— ﬁ) (pooled across all five
stocks) in dependence of the length of the underlying data window. We associate the first quartile (25%
quantile) with a ‘low’ persistence level, whereas the second quartile (50% quantile) and third quartile
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Figure 2. Time series of estimated ‘weekly’ (left panel, rolling windows covering 1800 observations) and ‘daily’

(right panel, rolling windows covering 360 observations) EACD(1, 1) parameters and functions thereof based on

seasonally adjusted 1-minute trading volumes for Intel Corporation (INTC) at each minute from 22 February to
31 December 2008

(75% quantile) are associated with ‘moderate’ and ‘high’ persistence levels, respectively. It is shown
that the estimated persistence increases with the length of the estimation window. Again, this result
might reflect that the ‘true’ persistence of the process can only be reliably estimated over sufficiently
long sampling windows. Alternatively, it might indicate that the revealed persistence is just a spurious
effect caused by aggregations over underlying structural changes.

Summarizing these first pieces of empirical evidence on local variations of MEM parameters, we
can conclude: (i) MEM parameters, their variability and their distribution properties change over time
and are obviously dependent on the length of the underlying estimation window; (ii) longer local
estimation windows increase the estimation precision but also enlarge the risk of misspecifications
(due to averaging over structural breaks) and thus increase the modelling bias. Standard time series
approaches would strive to obtain precise estimates by selecting large estimation windows, inflating,
however, at the same time the bias. Conversely, the LPA aims at finding a balance between parameter
variability and modelling bias. By controlling estimation risk, the procedure accounts for the possible
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Table I. Quartiles of estimated persistence levels (& + ) for all five

stocks at each minute from 22 February to 31 December 2008 (215 trad-

ing days) and six lengths of local estimation windows based on EACD

and WACD specifications. We label the first quartile as ‘low’, the second
quartile as ‘moderate’ and the third quartile as ‘high’

Estimation window EACD(1,1) WACD(1,1)

Low  Moderate High Low Moderate High

1 week 0.85 0.89 093  0.82 0.88 0.92
2 days 0.77 0.86 092 074 0.84 0.91
1 day 0.68 0.82 090 0.63 0.79 0.89
3 hours 0.54 0.75 0.88  0.50 0.72 0.87
2 hours 0.45 0.70 0.86 042 0.67 0.85
1 hour 0.33 0.58 0.80 031 0.57 0.80

Table II. Quartiles of 774,000 estimated ratios 8/ (6{ + B ) (based on estimation

windows covering 1800 observations) for all five stocks at each minute from 22

February to 31 December 2008 (215 trading days) and both model specifications

(EACD and WACD) conditional on the persistence level (low, moderate or high).

We label the first quartile as ‘low’, the second quartile as ‘mid’ and the third
quartile as ‘high’

Model Low persistence Moderate persistence High persistence

Low Mid High Low Mid High Low Mid High

EACD,¢ 028 022 018 030 023 019 031 024 020

EACD, B8 056 062 067 059 066 071 062 068 0.73
WACD,a¢ 028 021 017 030 023 0.18 032 024 0.19

WACD,E 054 060 0.65 058 065 070 060 0.68 0.74

trade-off between (in)efficiency and the coverage of local variations by finding the longest possible
interval over which parameter homogeneity cannot be rejected.

An important ingredient of the sequential testing procedure in the LPA is a set of critical values.
The critical values have to be calculated for reasonable parameter constellations. Therefore, we aim
at parameters which are most likely to be estimated from the data. As a first criterion we distinguish
between different levels of persistence, @ + S. This is performed by classifying the estimates into
three persistence groups (low, medium or high persistence) according to the first row of Table L. Then,
within each persistence group, we distinguish between different magnitudes of @ relative to 8. This
naturally results into groups according to the quartiles of the ratio E/ ('07 + E , yielding again three
categories (low, mid or high ratio). As a result, we obtain nine groups of parameter constellations, see
Table II, which are used below to simulate critical values for the sequential testing procedure.

3.3. Estimation Quality

Addressing the inherent trade-off between estimation (in)efficiency and local flexibility requires con-
trolling the estimation quality. In the proposed LPA framework, the so-called pseudo true parameter
changes over time (see, for example, Spokoiny, 2009). The key idea is to approximate this process by
a model with parameters which are constant over an interval with optimized length. Denote the pseudo
true (time-varying) parameter vector by 8* associated with a fixed interval 7, where, for convenience,
we omit the time subscript and only keep an asterisk (*) through the text. The quality of the (Q)MLE
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51 of the pseudo true 0™ is assessed by the Kullback—Leibler (KL) divergence. In particular, for a fixed
interval I, we consider the (positive) difference £ 51 — £7(0*) with log-likelihood expressions for
the EACD and WACD models given by equations (5) and (6), respectively. Denote the corresponding
loss function by L (51, 9*) = ‘61 (51) — 4 (9*)‘.

By introducing the rth power of the loss function, i.e. for any r > 0, there is a constant R, (6*)
satisfying

r

Eg« |L1(61,60%)| <R-(6%) (8)

and denoting the (parametric) risk bound depending on r > 0 and 6* (see, for example, Spokoiny
(2009); Cizek et al. (2009)). The risk bound (8) allows the construction of non-asymptotic confidence
sets and testing the validity of the (local) parametric model. For the construction of critical values, we
exploit equation (8) to show that the random set Sy (zo) = {9 : Ly (51 9*) < za} is an a-confidence
set in the sense that Py« (8* ¢ S7(z4)) < .

The parameter r drives the tightness of the risk bound. Accordingly, different values of r lead to
different risk bounds, critical values and thus adaptive estimates. Higher values of r lead to, ceteris
paribus, a selection of longer intervals of homogeneity and more precise estimates, however, increase
the modelling bias. It might be chosen in a data-driven way, e.g. by minimizing forecasting errors.
Here, we follow Cizek et al. (2009) and consider r = 0.5 and r = 1, a ‘modest risk case’ and a
‘conservative risk case’, respectively.

4. LOCAL PARAMETRIC MODELLING

The local parametric approach requires a time series to be locally, i.e. over short periods of time,
approximated by a parametric model. Though local approximations are obviously more accurate than
global ones, this proceeding raises the question of the optimal size of the local interval.

4.1. Statistical Framework

Including more observations in an estimation window reduces the variability, but obviously enlarges
the bias. The algorithm presented below strikes a balance between bias and parameter variability and
yields an interval of homogeneity. Our goal is to well approximate the ‘true’ model over an interval
I}, by the parametric model with constant parameter 6. The quality of approximation is measured by
the KL divergence. Consider the KL divergence (v, v’) between probability distributions induced
by v and v'. Then, define Ay, (0) = > ;<7 K {i, pi(6)}, where p;(6) denotes the model described
by equation (4) and p; is the true (unknown) data-generating process. The entity Ay, (8) measures
the distance between the underlying process and the assumed parametric model and thus allows us to
control the modelling bias.
Let, for some 0 € ©,

E[AL(O)] <A )

where A > 0 denotes the small modelling bias (SMB) for an interval I;. The SMB condition implies
that, for some parameter 6, the random quantity Ay, (6) is bounded by a small constant with a high
probability. Therefore, on the interval I, the ‘true’ model can be well approximated by the parametric
model with parameter 6 while keeping the modelling bias ‘small” according to equation (9). The best
parametric fit (4) on I is obtained by minimizing E[A, (8)] over 6 € ©. Here, the KL concept is
used for theoretical underpinning, but we do not estimate it in practice.
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Cizek et al. (2009) show that under the SMB condition (9), estimation loss scaled by the parametric
risk bound R, (6*) is stochastically bounded. In particular, in the case of (Q)ML estimation with loss

function L @}, 0*), the SMB condition implies

E [log {1 n ‘L, (5,, 9*)

r/Rr(G*)}] <1+A (10)

The proposed framework captures dependent data given a linear specification of the conditional
mean process. The methodology, however, can be generalized to nonlinear structures, assuming that,
locally, a nonlinear model approximates the ‘true’ (unknown) conditional mean process. Then the KL
divergence considers the probability measures induced by the ‘true’ model and that of the nonlinear
data structure, yielding, however, different (and more complex) risk bounds.

Consider (K + 1) nested intervals (with fixed right-end point ig) Iy = [ip — ng, io] of length ng,
Ip C I; C ... C Ik.Then, the ‘oracle’ (i.e. theoretically optimal) choice I+ of the interval sequence
is defined as the largest interval for which the SMB condition holds:

E[A7.(0)] < A (1)

This ‘oracle’ choice provides the *best’ local fit but not necessarily the best out-of-sample forecast.
Optimizing the procedure in terms of out-of-sample forecasting performance, however, is beyond the
scope of this paper. This task may appear infeasible in the case of high-frequency data modelling due to
the increased computational burden, unless very restrictive assumptions are imposed. It is therefore our
major research question to what extent an ‘optimal’ local fit is beneficial for out-of-sample forecasts.

So far, there has been limited attention devoted to the selection of optimal window lengths in the
econometric forecasting literature. As stressed by Cizek et al. (2009), time-varying coefficients are
typically assumed as smooth functions (of time) or, alternatively, as piecewise constant functions. For
instance, Pesaran and Timmermann (2007) consider a linear regression framework subject to struc-
tural breaks under the assumption of the presence of sudden jumps in the parameter values. Clark
and McCracken (2009) extend this work and allow for conditional heteroskedasticity and serial cor-
relation in the regression error terms. The LPA approach, however, includes both scenarios as special
cases: parameters can vary over time as the interval changes with i and, at the same time, can reveal
discontinuities and jumps as a function of time. In both cases, the observed data are described by an
unobserved process which, at each point 7, can be described by a historical interval in which the pro-
cess (approximately) follows a parametric specification. This local assumption enables us to apply
well-developed parametric methods to estimate the underlying parameter.

In practice, Ay, is unknown and therefore the oracle choice k* cannot be implemented. Conse-
quently, the aim is to mimic the oracle choice using a sequential testing procedure for the different
intervals k = 1,..., K. The resulting interval 1? is then used to construct the local estimator. Cizek
et al. (2009) and Spokoiny (2009) show that the estimation errors induced by the adaptive estimation
during steps k < k™ are not larger than those induced by (Q)ML estimation directly using k*. Hence
the sequential estimation and testing procedure does not incur a larger estimation error compared to
the situation where k* is known; see equation (10).

In applications, the lengths of the underlying intervals evolve on a geometric grid with initial length
ng and a multiplier ¢ > 1, ny = [nock ] In the present study, we select np = 60 observations (i.e.
minutes) and consider two schemes with ¢ = 1.50 and ¢ = 1.25and K = 8and K = 13, respectively:

(i) ng = 60 min, ny = 90 min, ..., ng = 1 week (9 estimation windows, K = 8); and
(i) ng = 60 min, ny = 75 min, ..., n13 = 1 week (14 estimation windows, K = 13).

The latter scheme bears a slightly finer granulation than the first one.
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Figure 3. Graphical illustration of sequential testing for parameter homogeneity in interval /. with length ny =

| Ix | ending at fixed time point ip. Suppose we have not rejected homogeneity in interval Ix_;, we search within

the interval Ji = I \ Ix— for a possible change point 7. In the top figure, the dotted region marks interval A

and the blue region marks interval By . splitting the interval /x4 into two parts depending upon the position of
the unknown change point ©

4.2. Local Change Point (LCP) Detection Test

Selecting the optimal length of the interval builds on a sequential testing procedure where at each
interval I one tests the null hypothesis on parameter homogeneity against the alternative of a change
point at unknown location t within /.

The test statistic is given by

Teork = sup {Car, (Tar) + Coee (05 ) =t (O )} (12)

ey

where Ji and By denote intervals Jx = Ix \ Ix—1, Ak,r = [io — ng+1, 7] and By = (7, io] utilizing
only a part of the observations within /4. As the location of the change point is unknown, the test
statistic considers the supremum of the corresponding likelihood ratio statistics over all T € I.

Figure 3 illustrates the underlying idea graphically: assume that, for a given time point iy, parameter
homogeneity in interval Iz_; has been established. Then, homogeneity in interval Iy is tested by
considering any possible breakpoint t in the interval J; = I \ Ix—1. This is performed by computing
the log-likelihood values over the intervals Ax ; = [io — ng41, T] dotted area and By ; = (t, ip] solid
are in the top figure for given . Computing the supremum of these two likelihood values for any 7 €
Jy and relating it to the log-likelihood associated with Iy 4 ranging from ig to ig —ng 41 results in the
test statistic (12). For instance, in our setting based on (K + 1) = 14 intervals, we test for a breakpoint,
e.g.ininterval /; = 75 min, by searching only within the interval J; = I\ /¢, containing observations
from y;,—75 up to yi,—e0. Then, for any observation within this interval, we sum equations (5) and (6)
for the EACD and WACD model, respectively, over A; ; and B; . and subtract the likelihood over /5.
Then, the test statistic (12) corresponds to the largest obtained likelihood ratio.

Comparing the test statistic (12) for given ig at every step k with the corresponding (simulated)
critical value, we search for the longest interval of homogeneity 17{\ for which the null is not rejected.

Then, the adaptive estimate 0 is the (Q)MLE at the interval of homogeneity, i.e. 0= AO/»k\ If the null is

already rejected at the first step, then 9 equals the (Q)MLE at the shortest interval /. Conversely, if
no breakpoint can be detected within /g, then 6 equals the (Q)QMLE of the longest window /.
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4.3. Critical Values

Under the null hypothesis of parameter homogeneity, the correct choice in the pure parametric situa-
tion is the largest considered interval /x. In the case of selecting k¥ < K and thus choosing § = 6,

instead of 51 x-thelossis Ly, (51 K,@) =Lre (51 K) — L1y (5) and is stochastically bounded:

Eg*

Lig (81.8)| = R, (6%) (13)

Critical values must ensure that the loss associated with ‘false alarm’ (i.e. selecting k < K) is
at most a p-fraction of the parametric risk bound of the ‘oracle’ estimate 07, . For r — 0, p can
be interpreted as the false alarm probability. We select the minimal critical values ensuring a small
probability of such a false alarm.

Accordingly, an estimate 67,, k = 1,..., K, should satisfy

E@*

~ o~ r
le <91k’91k)‘ = kar(e*) (14)
with p = pk/K < p. Condition (14) is fulfilled with the choice
zk = aprlog (p7') + arrlog (nx/ng—1) + azlog(ng), k=1,....K (15)

with constants ag, @; and a,. Since the number of selected intervals {/x }le and their corresponding
lengths {nk}f=1 are fixed, Cizek et al. (2009) show that the critical values are of the form z; =
C + Dlog(ng) fork =1,..., K with some constants C and D. A relevant choice of these constants
has to be selected by Monte Carlo simulation on the basis of the assumed data-generating process
(4) and the assumption of parameter homogeneity over the interval sequence {/j },Ile. The procedure
is run for fixed values C and D using simulated data, allowing to evaluate its performance and to
monitor if the condition (14) is fulfilled. Then, for a fixed value of C, one finds the minimal value
D(C) < 0 ensuring a decreasing pattern (with k) of the critical values. Therefore, a false alarm at an
early stage is more crucial since it is associated with a comparably variable estimate. After fixing the
false alarm probability at the first step, one determines the constant C (see, for example, Cizek et al.,
(2009). The authors note that, alternatively, the constants C and D could be found by minimizing the
related prediction errors.

To simulate the data-generating process, we use the parameter constellations underlying the nine
groups described in Section 3.2. and shown in Table II for nine different parameters 6*. The Weibull
parameter s is set to its median value 5" = 1.57 in all cases. Moreover, we consider two risk levels
(r = 0.5and r = 1), two interval granulation schemes (K = 8 and K = 13) and two significance
levels (p = 0.25 and p = 0.50) underlying the test.

The resulting critical values satisfying equation (14) for the nine possibilities of ‘true’ parameter
constellations of the EACD(1, 1) model for K = 13, r = 0.5 (‘moderate risk case’) and p = 0.25
are displayed in Figure 4. We observe that the critical values are virtually invariable with respect to
0* across the nine scenarios. The largest difference between all cases appears for interval lengths up
to 90 minutes. Beyond that, the critical values are robust across the range of parameters also for the
conservative risk case (r = 1), other significance levels and interval selection schemes.

In the sequential testing procedure, we employ parameter-specific critical values. In particular, at
each minute ij, we estimate a local MEM over a given interval length and choose the critical values
(for given levels of p and r) simulated for those parameter constellations (according to Table IT) which
are closest to our local estimates. For instance, suppose that at some point ig we have @ = 0.32 and

,?f = 0.53. Then, we select the curve associated with the low persistence ('07 + E) and the low ratio
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Figure 4. Simulated critical values of an EACD(1, 1) model for the ‘moderate risk case’ (r = 0.5), p = 0.25,
K = 13 and chosen parameter constellations according to Table II. The low (solid), middle (dashed) and upper
(dotted) curves are associated with the corresponding ratio levels /(@ + )

Table III. Summary of the local change point (LCP) detection test and adaptive estimation at fixed observation
ip. Here 7 denotes the unknown change point and n4 represents the length of the interval Ix

LCP: step 1
® Select intervals: 12, 11, J1 = I] \ I(), Al‘r = [i() —ns, ‘L’] and Bl,t = (‘L’, io]

e Compute the test statistic (12) at step 1: Tp.; = sup {(ZAI . (9/11 r) +43B,, (Fé/Bl T) —4y, (Fé//z)}
Ted ’ ’ ’ ’
LCP: step k
® Select intervals: Ik+|, Ik, Jk = Ik \ Ik71, Ak‘t = [i() —Nk+1, ‘L’] and Bk,r = (‘C, i()]
o Compute the test statistic (12) at step k: Txk—1.x Tkk—1 = sup La, . (04, . )+, . (ng t) —Lreg (01k+] )}
Tedk ’ ’ ’ ’

Testing procedure
o Select the set of critical values {3 } ,f: | according to the ‘persistence’ level

(E-i— ‘E) and ‘smoothness’ level F/ (E+ ’E) of the ‘weekly’ estimateFK and the desired tuning parameter constellation
o Compare Ty _; 4 with the simulated critical value 34 at step k
® Decision: reject the null of parameter homogeneity if Tx—1 x > 3«
Adaptive estimation
o Interval of homogeneity I/k\: the null has been first rejected at step & + 1

e Adaptive estimate: 6 = 9;:(i.e. (QMLE at the interval of homogeneity)

,?f/ ('07 + E . The key steps of the LCP detection test and the adaptive estimation are for convenience
summarized in Table III.

For illustration, the resulting adaptive choice of intervals at each minute on 22 February 2002 is
shown by Figure 5. Adopting the EACD specification (for p = 0.25 and K = 13) in the modest
risk case (r = 0.5, solid curve), one would select the length of the adaptive estimation interval lying
between 1.5 and 3.5 hours over the course of the selected day. Likewise, in the conservative risk case
(r = 1, dashed curve), the approach would select longer time windows with smaller variability and
thus larger modelling bias.

The time series of the chosen length of the intervals of homogeneity for Intel Corporation is shown
in Figure 6. The length of intervals ranges between 1 and 4 hours in the modest risk case (r = 0.5) and
between 2.5 and 5 hours in the conservative risk case (r = 1). The results indicate a larger variability
over shorter interval lengths in the modest risk case.

4.4. Empirical Findings

We apply the LPA to seasonally adjusted 1-minute aggregated trading volumes for all five stocks at
each minute from 22 February to 31 December 2008 (215 trading days; 77,400 trading minutes). We
use the EACD and WACD models as the two (local) specifications, two risk levels (modest, r = 0.5;
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Figure 5. Estimated length of intervals of homogeneity n; (in hours) for seasonally adjusted 1-minute cumulative

trading volumes of selected companies in the case of a modest (r = 0.5, solid line) and conservative (r = 1,

dashed line) modelling risk level. We use the interval scheme with K = 13 and p = 0.25. Underlying model:
EACD(1, 1). NASDAQ trading on 22 February 2008
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Figure 6. Estimated length of intervals of homogeneity n (in hours) for seasonally adjusted 1-minute cumulative

trading volumes for Intel Corporation (INTC) in case of a modest (r = 0.5, upper panel) and conservative

(r = 1, lower panel) modelling risk level. We use the interval scheme with K = 13 and p = 0.25. Underlying

models: EACD(1, 1) (left) and WACD(1, 1) (right). NASDAQ trading from 22 February to 22 December 2008
(210 trading days)

and conservative, r = 1) and two significance levels (p = 0.25 and p = 0.50). Furthermore, interval
length schemes with (i) K = 8 and (ii)) K = 13 are employed.

Figure 7 depicts the time series distributions of selected oracle interval lengths. First, as expected,
the chosen intervals are shorter in the modest risk case (» = 0.5) than in the conservative case (r = 1).
Practically, if a trader aims at obtaining more precise volume estimates, it is advisable to select longer
estimation periods, such as 4-5 hours. By doing so, the trader increases the modelling bias, but can
still control it according to equation (8). Hence this risk level allows for more controlled flexibility
in modelling the data. Conversely, setting r = 1 implies a smaller modelling bias and thus lower
estimation precision. Consequently, it yields smaller local intervals ranging between 2 and 3 hours in
most cases.

Secondly, our results provide guidance on how (a priori) to choose the length of a local window
in practice. Interestingly, the procedure never selects the longest possible interval according to our
interval scheme (1 week of data), but chooses a maximum length of 6 hours. This finding suggests
that even a week of data is clearly too long to capture parameter inhomogeneity in high-frequency
variables. As a rough rule of thumb, a horizon of up to 1 trading day seems to be reasonable. This
result is remarkably robust across the individual stocks, suggesting that the stochastic properties of
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Figure 7. Distribution of estimated interval length n; (in hours) for seasonally adjusted trading volumes of

selected companies in the case of modest (r = 0.5, dashed) and conservative modelling risk (r = 1, solid), using

an EACD (upper panel) and a WACD model (lower panel) from 22 February to 31 December 2008 (215 trading
days). We select 13 estimation windows based on significance level p = 0.25

Table IV. Average daily number of changes of the adaptively selected interval of homogeneity for five stocks
at NASDAQ from 22 February to 22 December 2008 (210 trading days) across different tuning parameter

constellations
EACD WACD
AAPL CSCO INTC MSFT ORCL AAPL CSCO INTC MSFT ORCL
r=0.50p=0.25 17.8 27.2 27.2 26.7 29.2 39.1 36.4 35.8 37.1 34.5
r=20.5p=0.50 18.1 26.7 27.2 26.6 29.3 39.1 36.4 36.2 37.2 34.7
r=1.0,p=0.25 8.4 9.6 10.3 11.0 9.8 17.5 18.1 17.6 17.1 17.1
r=1.0,p=0.50 8.7 9.7 104 10.9 9.7 18.3 17.8 18.0 16.9 17.0

high-frequency trading volumes are quite similar, at least across (heavily traded) blue chip stocks.
Nevertheless, as also illustrated in Figure 5, our findings show that the selected interval lengths clearly
vary across time. Hence a priori fixing the length of a rolling window can be still problematic and
suboptimal—even over the course of a day.

Thirdly, the optimal length of local windows does obviously also depend on the complexity of the
underlying (local) model. In fact, we observe that local EACD specifications seem to better approxi-
mate the data over longer estimation windows than in the case of WACD specifications. This is true
for nearly all stocks. Furthermore, from the average daily number of changes of the ‘optimal” window,
as reported in Table IV, one observes that the WACD results in roughly twice as many changes as the
EACD model. Hence more complex (local) modelling specifications obviously yield more changes of
the ‘optimal’ window. Interestingly, this (distributional) effect is more pronounced in the conservative
risk approach (r = 1), where one expects around 10 (EACD) or 20 (WACD) changes per day. In the
modest risk case (r = 0.5) we observe more changes with a moderate difference between the underly-
ing models, i.e. between 30 (EACD) and 40 (WACD) changes per day. All stocks reveal quite similar
patterns across the scenarios.

Finally, in Figure 8, we show time series averages of selected interval lengths in dependence of the
time of the day. Even after removing the intra-day seasonality component, we observe slightly shorter
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Figure 8. Average estimated interval length 7z (in hours) over the course of a trading day for seasonally adjusted

trading volumes of selected companies in the case of modest (r = 0.5, upper panel) and conservative modelling

risk (r = 1, lower panel), using an EACD model from 22 February to 31 December 2008 (215 trading days). We
select K = 13 windows and set the significance level to p = 0.25

intervals after opening and before closure. This is obviously induced by the fact that the local esti-
mation window during the morning still includes significant information from the previous day. This
effect is strongest at the opening, where estimates are naturally based on previous-day information
solely and becomes weaker as time moves on and the proportion of current-day information is increas-
ing. Consequently, we observe the longest intervals around mid-day, where most information in the
local window stems from the current day. Hence the LPA automatically accounts for the effects aris-
ing from concatenated time series omitting non-trading periods. During the afternoon, interval lengths
further shrink as trading becomes more active (and obviously less time homogeneous) before closure.

4.5. Drivers of the ‘Optimal’ Window Length

To identify potential (observable) determinants influencing the stability of parameter estimates, we
analyse the impact of key market variables on the selected length of the interval of homogeneity. In
particular, we study to what extent the locally selected window length is predictable based on variables
potentially causing inhomogeneity in trading processes, namely market volatility, the occurrence of
outliers and of news announcements.

Analysing the impact of market volatility on the average daily selected ‘optimal’ window length, we
distinguish between three regimes (low, moderate and high) of the daily volatility index (VIX). The
low (high) is defined in terms of VIX realizations lower (higher) than the corresponding first (third)
quartile. We report the correlation between the average daily length of the local estimation window
and the daily VIX series in the different regimes in Table V.

The strongest dependence is observed in the high-volatility regime. Here, abrupt increases of market
volatility significantly change the length of the selected intervals. Focusing on significant coefficients
only, the EACD model reveals positive correlations between the volatility and length of intervals. In
contrast, the WACD specification mostly induces a negative relationship. The results are quite robust
across all five stocks and surprisingly stable for different risk (power) levels. Hence, in summary, we
can conclude that market volatility has some impact on parameter homogeneity in trading volume
models but the direction of this dependence is not clearly identifiable and obviously depends on the
flexibility of the underlying local approximation.

Moreover, we analyse the effect of the occurrence of an outlier on the window length selection.
The latter is defined as a realization of cumulative trading volumes exceeding the 99% percentile. We
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Table V. Correlation coefficients between the average daily length of the interval of homogeneity and the daily
VIX for five stocks at NASDAQ from 22 February to 22 December 2008 (210 trading days) across different tuning
parameter constellations and three volatility regimes (low, moderate and high). The low (high) regime considers
positive changes of the VIX that are lower (higher) than the corresponding first (third) quartile. We set p = 0.25

EACD WACD

AAPL CSCO INTC MSFT ORCL AAPL CSCO INTC MSFT ORCL

r=0.5

Low 0.10 —0.02 0.03 0.01 —0.02 —0.03 —0.07 0.10 0.01 —0.11
Moderate ~ —0.02 0.03 —0.03 —0.03 0.03 —0.03 —0.01 —0.09 —0.02 —0.02
High 0.26* 0.31%* 0.23%* 0.25% 0.30* 0.19% —=0.02 —0.07 —0.17* —0.12
r=1

Low 0.19% —0.07 —0.03 0.01 —0.12 0.04 0.00 0.08 0.01 —0.11
Moderate  —0.02 0.11 0.03 0.01 0.04 —0.08 0.05 —0.01 —0.02 —0.05
High 0.22% 0.26* 0.26%* 0.19%* 0.31%* 0.19% —0.11 0.09 —0.20* —0.22%

Note: *5% significance.

Table VI. Percentage change of the average length of the interval of

homogeneity after a large outlier has been observed for five stocks at

NASDAQ from 22 February to 22 December 2008 (210 trading days)
across different tuning parameter constellations. We set p = 0.25

AAPL CSCO INTC MSFT ORCL

EACD,r = 0.5 —1.55 —=3.06% —2.78*  —245% —2.09
EACD,r = 1.0 —0.37 —1.12 —1.42%  —1.04 —0.94
WACD, r = 0.5 —4.98%  —4.59*%  —=3.04% —4.54* —3.62%
WACD, r = 1.0 —1.88* —1.60 —1.96% —2.09* —1.92%

Note: *5% significance.

compute the average length of intervals of homogeneity at the time point of an outlier’s appearance
and 5 minutes thereafter.

As shown in Table VI, the selected interval of homogeneity becomes smaller after observing a large
outlier. On average, the estimation window becomes on average shorter by 1% and 5% across all
stocks as well as across the different modelling frameworks. In most cases, the effect is statistically
significant at the 5% level. Interestingly, the changes are more pronounced based on a WACD spec-
ification and based on a modest risk level (r = 0.5). These results confirm our finding that a more
complex modelling approach or less conservative risk level yields a higher variability in ‘optimal’
window lengths.

Finally, we analyse to what extent daily news arrivals cause structural instability and thus changes
of local window lengths. For this purpose we utilize pre-processed company-relevant news data from
a news analytics tool of Reuters: the Reuters NewsScope Sentiment Engine. Here, firm-specific news
is processed based on an automated linguistic analysis of news stories and is classified according to
news direction and relevance; for details, see, for example, Grof3-KluBmann and Hautsch (2011). As
reported in Table VII, the number of ‘relevant’ company-specific news per day has only a minor impact
on the lengths of local intervals of parameter homogeneity. In fact, the corresponding correlations
are not significantly different from zero. Only for one stock (Microsoft) we find significant (negative)
relationship in the modest risk case (r = 0.5). Here, the length of the interval of homogeneity varies
stronger if news arrive.
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Table VII. Correlation coefficients between the average daily length of the interval of homogeneity and

the daily number of relevant company-specific news for five stocks at NASDAQ from 22 February to 22

December 2008 (210 trading days). We consider the modest (r = 0.5) and the conservative risk case
r = 1landset p =0.25

EACD WACD

AAPL CSCO INTC MSFT ORCL AAPL CSCO INTC MSFT  ORCL

0. 0.01 0.00 0.01 —0.12%* 0.03 —0.03 0.01 —-0.10 —0.13*  —0.06
1 0.02 0.06 0.03 —0.03 0.00 —0.05 0.08 0.02 —0.01 —0.06

5
0

r
r

Note: ¥10% significance; **5% significance.

5. FORECASTING TRADING VOLUMES

Besides providing empirical evidence on the time (in)homogeneity of high-frequency data, our aim
is to analyse the potential of the LPA when it comes to out-of-sample forecasts. The most important
question is whether the proposed adaptive approach yields better predictions than a (rolling window)
approach where the length of the estimation window is fixed on an a priori basis. To set up the fore-
casting framework as realistic as possible, at each trading minute from 22 February to 22 December
2008, we predict the trading volume over all horizons 4 = 1,2, ..., 60 minutes during the next hour.
The predictions are computed using multi-step-ahead forecasts using the currently prevailing MEM
parameters and initialized based on the data from the current local window.

The local window is selected according to the LPA approach using r € {0.5, 1} and p € {0.25,0.5}.
Denoting the corresponding /-step prediction by V; ., the resulting prediction error is ;15 =
Yieh — Yi+h, With y; 1, denoting the observed trading volume. As a competing approach, we con-
sider predictions based on a fixed estimation window covering 1 hour (i.e. 60 observations), 2 hours
(i.e. 120 observations), 1 day (i.e. 360 observations) and, alternatively, 1 week (i.e. 1800 observations)
yielding predictions V; 1, and prediction errors €; 1, = V;+r — Vi+4. To account for the multiplicative
impact of intra-day periodicities according to equation (1), we multiply the corresponding forecasts
by the estimated seasonality component associated with the previous 30 days.

To test for the significance of forecasting superiority, we apply the Diebold and Mariano (1995)
test. Define the loss differential dj, between the squared prediction errors stemming from both meth-
ods given horizon /i and n observations as dj, = {d; 14}, with d; 1 =&}, =27, . Then, testing
whether one forecasting model yields qualitatively lower prediction errors is performed based on
the statistic

Tsth = {Z U(d;1p > 0) — O.Sn} /~0.25n (16)

i=1

which is approximately N(0, 1) distributed. Our sample covers n = 75,600 trading minutes (cor-
responding to 210 trading days). To test for quantitative forecasting superiority, we test the null
hypothesis Hy : E [dj,] = 0 using the test statistic

Tosn = dn/ 27 F 4,(0)/n 5 N, 1) (17)

Here, dj, denotes the average loss differential dy = n! Z:’zl d;iyp and ?dh (0) is a consistent
estimate of the spectral density of the loss differential at frequency zero. As shown by Diebold and
Mariano (1995), the latter can be computed by
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Figures 9 and 10 display the Diebold—Mariano test statistics Tpy,, against the forecasting horizon
h. The underlying LPA is based on the EACD model with significance level p = 0.25. Negative
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Figure 9. Test statistic Tpwm,, across all 60 forecasting horizons for five large companies traded at NASDAQ from

22 February to 22 December 2008 (210 trading days). The dotted curve depicts the statistic based on a test of the

LPA against a fixed-window scheme using 360 observations (6 trading hours). The solid curve depicts the statistic

based on a test of the LPA against a fixed-window scheme using 1800 observations (30 trading hours). Upper

panel: results for the ‘modest risk case’ (r = 0.5); lower panel: results for the ‘conservative risk case’ (r = 1)
given a significance level of p = 0.25
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Figure 10. Test statistic Tpm, 5 across all 60 forecasting horizons for five large companies traded at NASDAQ

from 22 February to 22 December 2008 (210 trading days). The dotted curve depicts the statistic based on a

test of the LPA against a fixed-window scheme using 60 observations (1 trading hour). The solid curve depicts

the statistic based on a test of the LPA against a fixed-window scheme using 120 observations (2 trading hours).

Upper panel: results for the ‘modest risk case’ (r = 0.5); lower panel: results for the ‘conservative risk case’
(r = 1) given a significance level of p = 0.25
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statistics indicate that the LPA provides smaller forecasting errors. We observe that, in all cases, the
fixed-window based forecast is worse than the LPA. The fixed-window approach performs particularly
poorly if it utilizes windows covering 1 week or even 1 day of data. These windows seem to be
clearly too long to cover local variations in parameters and thus yield estimates which are too strongly
smoothed. Our results show that these misspecifications of (local) dynamics result in qualitatively
significantly worse predictions. Conversely, shorter (fixed) windows provide clearly better forecasts.
Nevertheless, even in this case, the LPA significantly outperforms the fixed-window setting, reflecting
the importance of time-varying window lengths.

Analysing the prediction performance in dependence of the forecasting horizon, we observe that
LPA-based predictions are particularly powerful over short horizons. The highest LPA overperfor-
mance is achieved at horizons of approximately 3—4 minutes. This is not surprising as the local
adaptive estimates and thus corresponding forecasts are most appropriate in periods close to the local
interval. Conversely, over longer prediction horizons, the advantage of local modelling vanishes as
the occurrence of further breakpoints is more likely. We show that the best forecasting accuracy is
achieved over horizons of up to 20 minutes. Finally, an important finding is that the results are quite
robust with respect to the choice of the modelling risk level r. This makes the method quite general
and not critically dependent on the selection of tuning parameters.

Table VIII summarizes the test statistics Tgr ;. The table reports the correspondingly largest (i.e.
least negative) statistics across 30 forecasting horizons. These results clearly confirm the findings
reported in Figure 9: the LPA produces significantly smaller (squared) forecasting errors in almost
all cases. Moreover, Table VIII confirms the findings above that the forecasting accuracy is widely
unaffected by the selection of LPA tuning parameters.

Table VIII. Largest (in absolute terms) test statistic 7st.5 across 30 forecasting horizons as well as EACD and

WACD specifications for five companies traded at NASDAQ from 22 February to 22 December 2008 (210 trading

days). We compare LPA-implied forecasts with those based on rolling windows using a priori fixed lengths of 1

week, 1 day, 2 hours and 1 hour, respectively. Negative values indicate lower squared prediction errors resulting

from the LPA. According to the Diebold—Mariano test (17), the average loss differential is significantly negative
in almost all cases (significance level 5%)

EACD WACD

AAPL CSCO INTC MSFT ORCL AAPL CSCO INTC MSFT ORCL
1 week
r=0.5,pp=025 —389 —286 —241 —338 314 —226 —257 —202 =267 —26.6
r=0.5,0=050 -—387 —287 —242 338 =314 =227 =255 =203 =267 —26.6
r=1.0,p=025 —405 =314 —233 —39.1 —328 =279 =308 -—21.5 =313 —29.8
r=1.0,p=050 —404 -313 —233 -390 —-329 -—28.1 308 215 =315 —29.7
1 day
r=0.50=025 -—108 —6.0 —13.1 —=5.7 —15.1 —6.4 —3.5 —6.1 —4.9 —12.6
r=20.5,0=050 —10.6 —6.0 —12.8 —=5.5 —15.0 —6.3 —3.2 —6.2 —4.8 —12.7
r=1.0,p=0.25 —6.9 —8.6 —8.7 —4.4 —12.9 —4.1 —5.1 —6.5 —4.2 —11.5
r=1.0,p=0.50 —7.1 —8.6 —8.8 —4.4 —13.0 -39 —5.2 —6.5 —4.1 —11.4
2 hours
r=0.5p0=025 -—113 —34 —141 —11.8 =240 —5.6 —5.9 —11.5 —112 =203
r=0.5p0=050 —11.2 —35 —141 —-11.7 =239 —5.6 —5.8 —114 —-112 =204
r=1.0,p=0.25 —5.9 2.0 —134 —5.0 —224 —-5.0 —1.1 —12.5 —7.6 —20.6
r=1.0,p=0.50 —5.9 2.1 —13.5 —-50 —224 —5.1 —1.1 —12.5 =7.6 =205
1 hour
r=20.5p=0.25 —9.3 —6.6 —10.5 —2.0 —27.2 —4.9 —8.5 —10.4 —0.5 —24.7
r=20.5p0=0.50 —9.2 —6.6 —104 —2.0 —27.1 —4.8 —8.6 —104 —0.4 —24.7
r=1.0,p=0.25 —33 —-0.9 —8.7 4.5 —27.7 —34 —=3.0 —94 4.7 —25.1
r=1.0,p=0.50 —-33 —0.7 —8.7 4.5 —27.7 —34 —2.9 —9.7 4.9 —25.0
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By depicting the ratio of root mean squared errors

n n
—1 ~2 -1 =2
n Z€i+h h Zgi+h

i=1 i=1

In Figure 11, we provide deeper insights into the forecasting performance of the two competing
approaches over time and over the sample. In most cases, the ratio is clearly below one and thus also
indicates a better forecasting performance of the LPA method. This is particularly true during the last
months and thus the height of the financial crisis in 2008. During this period, market uncertainty has
been high and trading activity has been subject to various information shocks. Our results show that
the flexibility offered by the LPA is particularly beneficial in such periods, whereas fixed-window
approaches tend to perform poorly.

Figure 12 shows the ratio of root mean squared errors in dependence of the length of the forecasting
horizon (in minutes). It turns out that the LPA’s overperformance is strongest over horizons between
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Figure 11. Ratio between the RMSPEs of the LPA and of a fixed-window approach (covering 6 trading hours)
over the sample from 22 February to 22 December 2008 (210 trading days). Upper panel: results for the underlying
(local) EACD model; lower panel: results for the underlying (local) WACD model
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Figure 12. Ratio between the RMSPEs of the LPA and of a fixed-window approach (covering 6 trading hours)

over the sample from 22 February to 22 December 2008 (210 trading days). Upper panel: EACD model; lower
panel: WACD model
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2 and 4 minutes. Over these intervals, the effects of superior (local) estimates of MEM parameters
fully pay out. Over longer horizons, differences in prediction performance naturally shrink as forecasts
converge to unconditional averages.

6. CONCLUSIONS

We propose a local adaptive multiplicative error model for financial high-frequency variables. The
approach addresses the inherent inhomogeneity of parameters over time and is based on local window
estimates of MEM parameters. Adapting the local parametric approach (LPA) by Spokoiny (1998)
and Mercurio and Spokoiny (2004), the length of local estimation intervals is chosen by a sequential
testing procedure. Balancing modelling bias and estimation (in)efficiency, the approach provides the
longest interval of parameter homogeneity which is used for modelling and forecasting.

Applying the proposed approach to the high-frequency series of 1-minute cumulative trading vol-
umes based on several NASDAQ blue chip stocks, we can conclude as follows. First, MEM parameters
reveal substantial variations over time. Second, the optimal length of local intervals varies between
1 and 6 hours. Nevertheless, as a rule of thumb, local intervals of around 4 hours are suggested.
Third, the local adaptive approach provides significantly better out-of-sample forecasts than competing
approaches using a priori fixed lengths of estimation intervals. This result demonstrates the impor-
tance of an adaptive approach. Finally, we show that the findings are robust with respect to the choice
of LPA steering parameters controlling modelling risk.

As the stochastic properties of cumulative trading volumes are similar to those of other (persistent)
high-frequency series, our findings are likely to be carried over to, for instance, the time between
trades, trade counts, volatilities, bid—ask spreads and market depth. Adaptive techniques thus constitute
a powerful device to improve high-frequency forecasts and to gain deeper insights into local variations
of model parameters.
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